CS 188: Atrtificial Intelligence
Spring 2010

Lecture 7: Minimax and Alpha-Beta
Search

2/9/2010

Pieter Abbeel — UC Berkeley

Many slides adapted from Dan Klein

Announcements

= Section format

= Written 2: due Thursday

Simple two-player game example

Tic-tac-toe Game Tree

MAX (X)
X X X
MIN (O) X X X
X X X
X[0 X[Jo] [X
MAX (X) o
x[o[x] [X[o x[0
MIN (0) X X
—v 5% [(xolx| Kot/ -
TERMINAL o|ix| [o]o]X X
X[X[o] /1x]6]0o
Utility 1 7’ 0 +1
-

Deterministic Games

= Many possible formalizations, one is:
= States: S (start at s))
—%p= Players: P={1...N} (usually take turns)
—= Actions: A (may depend on player / state)
= Transition Function: SxA —» & T Z”‘
= Terminal Test: S — {1,}) J
= Terminal Utiltie: SxP (O/‘-’)
cam
(1 ;“‘)
0

= Solution for a player is a policy: S A

Deterministic Single-Player?

= (Deterministic, single player,
rfectinformation: — #
= Know the rules

= Know what actions do
= Know when you win]
'S

" E.g. Freecell, 8-Puzzle, Rubik
cube
= ... it's just search!
= Slight reinterpretation:
= Each node stores a value: the
best outcome it can reach
= This is the maximal outcome of
its children (the max value)
= Note that we don’t have path
sums as before (utilities at end)
= After search, can pick move that
leads to best node

Deterministic Two-Player

= E.g. tic-tac-toe, chess,

Ch KE
= (Zero-sum games
= One playermaximizes result

= The other minimizes result
= Minimax search

= A state-space search tree

= Players alternate

= Each layer, or ply, consists of
a round of moves*

= Choose move to position with
highest minimax value = best
achievable utility against best
play

* Slightly different from
the book definition

Minimax Example

Minimax Search :

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)

V<« —00

Oforg;;@.ln SUCCESSORS(statg)do v<—('v, Tt —VALUE&S)J
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)

Ve 00 .
for a, sin SUCCESSORS(state) do 1)@0, TAK-VALUE(s))

return v

Minimax Properties

Optimal against a perfect player. Otherwise? X

= Time complexity?
= O(bm)

Space complexity?
= O(bm)

For ches§, b = 35, m=100>
= Exact solution is completely infeasible

/ But, do we need to explore the whole tree?

Pruning

Alpha-Beta Pruning

= General configuration

= We’re computing the MIN- MAX
VALUE at n

= We're looping over n’'s children

= n's value estimate is dropping

= ais the best value that MAX
can get at any choice point :
along the current path MAX

MIN

= If nbecomes worse than a,
MAX will avoid it, so can stop MIN
considering n's other children

= Define b similarly for MIN

Alpha-Beta Pseudocode

function MAX-VALUE(state) returns a ulility value
if TERMINAL-TEST(state) then return UTILITY(state)
Ve —0O0
for a, sin SUCCESSORS(state) do v+ Max(v, MIN-VALUE(s))
eturn v

Murumay

function @Mf «,) returns a utility value 6

inputs: state, current state in game
x>, the value of the best alternative for MAX along the path to sta,tcj
’ — (3, the value of the best alternative for MIN along the path to state]
WY

if TERMINAL-TEST(state) then return UTILITY(state)
Ve —00 -
for a, sin SUCCESSORS(state) do AN
v MAX(v, MIN-VALUE(s, @, 8)) a—
C) if p (5)0,then return .~ ~
o +—Max(a, v) b~
return v

Alpha-Beta Pruning Properties

= This pruning has no effect on final result at the root

= Values of intermediate nodes might be wrong!
= Good child ordering improves effectiveness of pruning

= With “perfect ordering”: =
= Time complexity drops to O(@)
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

= This is a simple example of metareasoning (computing
about what to compute)

Alpha-Beta Pruning Example

Starting a/b Eeo ,50]

4 a is MAX’s best alternative here or above
b is MIN’s best alternative here or above

Alpha-Beta Pruning Example

Startinga/b pore Q

Raising a

Loweringb _

a=-00
b=+00

Raising a

a £ N/ a is MAX’s best alternative here or above
b=8 s —J b is MIN’s best alternative here or above

Resource Limits

= Cannot search to leaves
= Depth-limited search

= Instead, search a limited depth of tree

= Replace terminal utilities with an eval
function for non-terminal positions

—= Guarantee of optimal play is gone

—f% More plies makes a BIG difference

= Example:

= Suppose we have 100 seconds, can
explore 10K nodes / sec

= So can check 1M nodes per move

= o-f reaches about depth 8 — decent
chess program

23

Evaluation Functions

= Function which scores non-terminals

Black to move

White slightly better

Ideal function: returns the utility of the position
In practice: typically weighted linear sum of features:

White to move

Black winning

a

Lo Bual(s) =) f1(s) + waf2(s) + ... + wn fn(s)
" e.g.fi(s) =(num white queens — num black queens), etc.

24

Why Pacman Can Starve

= He knows his score will go
up by eating the dot now

= He knows his score will go
up just as much by eating
the dot later on

= There are no point-scoring
opportunities after eating
the dot

= Therefore, waiting seems
just as good as eating

lterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up on any path of
length 2)

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.

Why do we want to do this for multiplayer games?

27

10

b&\c\b«‘s: X *”%‘W\d_\(

LA;CC\ (M) x—X

28

Non-Zero-Sum Games

= Similar to
minimax:
= Utilities are
now tuples

= Each player
maximizes
their own entry
at each node

= Propagate (or

back up) nodes
from children

29

11

