CS 188: Artificial Intelligence Spring 2010

Lecture 7: Minimax and Alpha-Beta Search

2/9/2010

Pieter Abbeel - UC Berkeley
Many slides adapted from Dan Klein

Announcements

- Section format
- Written 2: due Thursday

Simple two-player game example

Deterministic Games

- Many possible formalizations, one is:
- States: S (start at s_{0})

Players: $\mathrm{P}=\{1 \ldots \mathrm{~N}\}$ (usually take turns)
\longrightarrow Actions: A (may depend on player / state)

- Transition Function: SxA \rightarrow S
- Terminal Test: $\mathrm{S} \rightarrow\{\mathrm{t}, \mathrm{f}\}$
- Terminal Utilities: $\mathrm{SxP} \rightarrow \mathrm{R}$

$(-1,1)$
$(1,-1)$
\rightarrow Solution for a player is a policy: $S^{\prime} \rightarrow \mathrm{A}$

Deterministic Single-Player?

- Deterministic, single player,
perfect information:
- Know the rules
- Know what actions do
- Know when you win
- E.g. Freecell, 8-Puzzle, Rubik's cube
- ... it's just search!
- Slight reinterpretation:
- Each node stores a value: the best outcome it can reach
- This is the maximal outcome of its children (the max value)
- Note that we don't have path sums as before (utilities at end)
- After search, can pick move that leads to best node

Deterministic Two-Player

- E.g. tic-tac-toe, chess, checkers \qquad
- Zero-sum games
- One player maximizes result
- The other minimizes result
- Minimax search
- A state-space search tree
- Players alternate
- Each layer, or ply, consists of a round of moves*
- Choose move to position with highest minimax value = best achievable utility against best play

* Slightly different from the book definition

Minimax Example

Minimax Search

function MAX-VALUE(state) returns a utility value
if Terminal-Test(state) then return Utility (state),

Vreturn v
function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility (state)
$v \leftarrow \Phi$
for a, s in $\operatorname{Successors}($ state $)$ do $v \leftarrow \operatorname{Min}(v$, Max x - Value(s)) return v

Minimax Properties

- Optimal against a perfect player. Otherwise?
- Time complexity?
- O(bㄴ)
- Space complexity?
- O(bm)
- For chess, $b \approx 35, m \approx 100$

- Exact solution is completely infeasible
n But, do we need to explore the whole tree?

Pruning

Alpha-Beta Pruning

- General configuration
- We're computing the MINVALUE at n
- We're looping over n's children
- n's value estimate is dropping
- a is the best value that MAX can get at any choice point along the current path
- If n becomes worse than a, MAX will avoid it, so can stop

Alpha-Beta Pseudocode

> function Max-VALuE(state) returns a utility value if Terminal-Test(state) then return Utility(state) $v \leftarrow-\infty$
> for a, s in $\operatorname{SUCCESSORS}($ state $)$ do $v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(s))$ Geturn v
function Max-Valur state, $, \underline{\alpha}, \beta$ returns a utility value inputs: state, current state in game
$\longrightarrow\left\{\begin{array}{l}\leadsto \alpha \text {, the value of the best alternative for MAX along the path to state } 1 \\ \longrightarrow \beta \text {, the value of the best alternative for MIN along the path to state }]\end{array}\right]$ if Terminal-Test(state) then return Utility (state)
$v \leftarrow-\infty$
for a, s in Successors(state) do
) $v \leftarrow \operatorname{Max}(v, \operatorname{Min-\operatorname {Value}}(s, \alpha, \beta)) \propto$
e if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAx}(\alpha, v) \leftrightarrows$
return v

Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
- Time complexity drops to O (bma)
- Doubles solvable depth!
- Full search of, e.g. chess, is still hopeless...
- This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Pruning Example

Resource Limits

- Cannot search to leaves
- Depth-limited search
- Instead, search a limited depth of tree
- Replace terminal utilities with an eval function for non-terminal positions

Guarantee of optimal play is gone

- ${ }^{\boldsymbol{\$}}$ More plies makes a BIG difference
- Example:
- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1M nodes per move
- $\alpha-\beta$ reaches about depth 8 - decent chess program

Evaluation Functions

- Function which scores non-terminals

Black to move
White slightly better

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:
$\measuredangle \operatorname{Eval}(s)={\underset{w}{1}} f_{1}(s)+w_{2} f_{2}(s)+\ldots+\underline{w}_{n} \underline{f}_{\underline{n}}(s)$
- e.g. $f_{1}(s)=$ (num white queens - num black queens), etc.

Why Pacman Can Starve

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on

- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If "1" failed, do a DFS which only searches paths of length 2 or less.
3. If " 2 " failed, do a DFS which only searches paths of length 3 or less.
....and so on.

Why do we want to do this for multiplayer games?

Non-Zero-Sum Games

- Similar to minimax:
- Utilities are now tuples
- Each player maximizes their own entry at each node
- Propagate (or back up) nodes from children

